Gel Batteries And Lithium Solar Batteries in Kenya

Choosing suitable solar panels is of high importance when setting up a home solar power system in Kenya. Many factors are taken into attention before making a purchase. Solar Batteries are one of the most essential elements of off-grid solar systems in Kenya for a backup power storage station on rainy/cloudy days or at night.

Firstly, you need to understand what you want to get out of your battery. Secondly, you have to source your solar batteries in Kenya from a reputable supplier so that to be certain you get what you order for. Lastly, the performance and lifespan of solar batteries depend on how you use and maintain them.

That said, we will do a comparison of Gel Solar Batteries in Kenya vs Lithium Solar Batteries in Kenya.

Lifespan / Cycle life

When you discharge a battery (use it to power your appliances), then charge it back up with your panels, that is referred to as one charge cycle. We measure the lifespan of batteries not in terms of years, but rather how many cycles they can handle before they expire.

Think of it like putting mileage on a car. When you evaluate the condition of a used car, mileage matters a lot more than the year it was produced. Same goes for batteries and the number of times they’ve been cycled.

A sealed lead-acid battery at a vacation home may go through 100 cycles in 4 years, whereas the same battery might go through 300+ cycles in one year at a full-time residence. The one that has gone through 100 cycles is in much better shape.

Cycle life is also a function of depth of discharge (how much capacity you use before recharging a battery). Deeper discharges put more stress on the battery, which shortens its cycle life.

Lithium ion batteries have more cycle life than gel batteries and they generally last longer.

Depth Of Discharge (DoD)

Discharge depth refers to how much overall capacity is used before recharging the battery. For example, if you use a quarter of your battery’s capacity, the depth of discharge would be 25%.

Batteries don’t discharge fully when you use them. Instead, they have a recommended depth of discharge: how much can be used before they should be refilled.

Gel batteries should only be run to 50% depth of discharge. Beyond that point, you risk negatively affecting their lifespan.

In contrast, lithium batteries can handle deep discharges of 80% or more. This essentially means they feature a higher usable capacity.


Lithium batteries are more efficient. This means that more of your solar power is stored and used.

As an example, lead acid batteries are only 80-85% efficient depending on the model and condition. That means if you have 1,000 watts of solar coming into the batteries, there are only 800-850 watts available after the charging and discharging process.

Lithium batteries are more than 95% efficient. In the same example, you’d have over 950 watts of power available.

Higher efficiency means your batteries charge faster. Depending on the configuration of your system, it could also mean you buying fewer solar panels, less battery capacity and a smaller backup generator.

Charge Rate

With higher efficiency also comes a faster rate of charge for lithium batteries. They can handle a higher amperage from the charger, which means they can be refilled much faster than lead-acid.

We express charge rate as a fraction, such as C/5, where C = the capacity of the battery in amp hours (Ah). So a 430 Ah battery charging at a rate of C/5 would receive 86 charging amps (430/5). Lead-acid batteries are limited in how much charge current they can handle, mainly because they will overheat if you charge them too quickly.

In addition, the charge rate gets significantly slower as you approach full capacity. Lead acid batteries can charge around C/5 during the bulk phase (up to 85% capacity). After that, the battery charger automatically slows down to top off the batteries.

This means lead acid batteries take longer to charge, in some cases more than 2x as long as a Lithium alternative.

Energy Density

The energy density of lithium batteries is much higher than lead-acid, meaning they fit more storage capacity into less space.

For example, it may take 2 lithium batteries to power a 5 kW system, but you’d need 8 lead-acid batteries to do the same job. When you take the size of the entire battery bank into account, lithium weighs less than half as much. This can be a real benefit if you need to get creative with how you mount your battery bank.

If you are hanging an enclosure on the wall or hiding it in a closet, the improved energy density helps your lithium battery bank fit into tighter spaces.

Our Advice

Jesaton suggests choosing the batteries according to your purpose and within the most relevant price. GEL batteries are the best for testing or less expensive solar projects. Lithium batteries are good for long-time installation and help avoid frequent substitution.

Contact us today on 0715 020605 or send us an email for Solar Power Systems in Kenya including solar panels. solar batteries and all solar solutions